放射線治療では、線量分布を臓器ごとに評価できるよう、CTやMRIなどの医用画像上で腫瘍領域や正常臓器の輪郭作成を行う必要がある。輪郭作成時間を短縮するために、臨床における自動輪郭作成ツールの需要は高まっており、中でも人工知能(AI)技術により腫瘍や臓器の自動認識を行うシステムに期待が高まっている。
広島大学の河原大輔助教、小澤修一特任准教授、永田靖教授らと日本臨床腫瘍研究グループ(JCOG)の医学物理ワーキンググループメンバーである西尾禎治教授らの研究グループでは、AI技術による新たな自動輪郭作成システムであるStep-wise netを開発した。Step-wise netは、Deep learning技術により2段階の学習を行って頭頚部の複数の臓器の輪郭を抽出する。1段階目では輪郭作成の対象となる臓器周辺領域を抽出し、2段階目では抽出した領域内で臓器の輪郭作成を高精度に行う。
Step-wise netの輪郭作成精度を評価したところ、AIを用いない既存の自動輪郭抽出システム(市販ツールであるAtlas法)と比較して、全ての臓器においてStep-wise netの方が精度が高かった。さらに、AIを用いる従来法(U-net)との比較でも、Step-wise netの方が全ての臓器で精度が上回る結果となった。
Step-wise netによって、輪郭作成精度を著しく向上できるだけではなく、輪郭作成時間は従来の10分の1以下まで短縮される予定だとしており、医療現場の業務の改善と効率化に資することが見込まれる。
また、Step-wise netの自動輪郭作成では手動輪郭のような施設間における差も生じないため、統一したルールに基づき各施設で同程度の品質の輪郭作成を行う必要のある臨床試験でも、本ツールの活用が期待されるとしている。